DETERMINATION OF TECHNOLOGICAL FEATURES AND AMPELOGRAPHIC MOLECULAR CHARACTERIZATION OF SOME LOCAL GRAPE VARIETIES IN LAKES REGION TURKEY

Seçkin GARGIN¹, Alim GÖKTAŞ¹, Ahmet ALTINDİŞLİ², Ali ERGÜL³

¹Eğirdir Horticulture Research Institute, Isparta, Turkey ²Ege University, Faculty of Agriculture, Department of Horticulture, İzmir, Turkey ³Ankara University Biotechnology Institute Ankara, Turkey

This study was done to define ampelographic and genetic characterization, technological features of 11 local grape varieties. Ampelographic observations were carried out during two years (2009 and 2010) using 55 descriptors from international grape descriptors and the definitions relevant to each character were performed by the way indicated in the lists. Mature leaf number of lobes, shape of the blade, inflorescence sex of flower, berry skin colour, berry shape, berry flesh firmness were determined.

ISSR analysis was also employed to characterize the genotypes at DNA level. Genetic relations among the genotypes were evaluated at DNA level on dendogram. The lowest similarity index among varieties betweeen Antep Büzgülü and Alyanak while the highest was between Senirkent Dimridi and Burdur Dimridi.

Varieties were evaluated for technological features. Yield, total soluble solids, must yield, acidity, bunch and berry specifications had been determined. Varieties with high must yield and varieties with high economic value and commercial importance had been determined.

Key Words: Vitis vinifera L., grape variety, ampelography, molecular definition, ISSR

FESTSETZUNG DER TECHNOLOGISCHEN EIGENSCHAFTEN MIT DEN AMPELOGRAPHISCHEN UND MOLEKULAREN CHARAKTERISIERUNGEN DER EINIGEN ÖRTLICHEN TRAUBENSORTEN IN DEM SEENGEBIET

Bei dieser Forschung ist die Charaktersierung mit den ampelographischen und molekularen Verfahren, technologischen Eigenschaften der örtlich erheblichen 11 Traubensorten in dem Seengebiet durchgeführt worden. In der ampelographischen Arbeitsabteilung sind die 55 Eigenschaften, welche aus den Beschreibungslisten von internationalen OIV und UPOV ausgewählt sind, in 2 Jahren (in 2009 und 2010 Jahren) untersucht und erledigt worden. Die Blattlappenzahl, Blattform und Blumenstruktur, Kornschalfarbe, Obstpulpafarbe, Aroma und Reifungszeiten sind festgesetzt worden.

Es ist der Technik SSR (Simple Sequence Repeats DANN) verwendet worden, um die Weinrebenpotential in der Niveau DANN festzusetzen. Die in den Sorten festgestellten Genbeziehungen sind in der Index- und Dendrogramniveau geschafft worden. Die niedrigste Ähnlichkeit zwischen den Traubensorten war in den Sorten Antep Büzgülü-Alyanak und die höchste Ähnlichkeit war in den Sorten Senirkent Dimridi-Burdur Dimridi betrachtet.

Die Sorten sind in den technologischen Eigenschaften in den verschiedenen Richtungen bewertet worden. Die Frucht ist wie Eigenschaften von im Wasser lösbare Trockensubstanz, Traubensaftperformanz, Säuregehalt, Weintraube, Korn untersucht worden. Es sind die Sorten, welche in der Eigenschaft von hoher Traubensaftperformanz sind, festgestellt worden. Die Wirtschafts- und Handelswerte besitzenden örtlichen Sorten festgesetzt worden.

Schlüsselwörter: *Vitis vinifera* L., ampelographische, molekulare Beschreibung, technologische Eigenschaften.

INTRODUCTION

Turkey has a long history of viticulture, dating back to 3500 B.C. (Oraman & Ağaoğlu 1969). The country has been suggested as one of the regions where grapes were first cultivated (Winkler *et al.* 1974). Turkey is a center of diversity for grapevines (*Vitis vinifera* L.) and possesses a rich grapevine germplasm (Arroya-Garcia *et al.* 2006, Ergül *et al.* 2006). The Mediterranean region of Turkey with suitable climatic conditions possesses the one of the largest areas devoted to grapevine production in the country, second only to the Aegean region.

This study was done to define ampelographic and genetic characterization of 11 local grape varieties. Ampelographic observations were carried out during two years (2009 and 2010) using 56 descriptors from international grape descriptors and the definitions relevant to each character were performed by the way indicated in the lists. Mature leaf number of lobes, shape of the blade, inflorescence sex of flower, berry skin colour, berry shape, berry flesh firmness were determined. This study aimed to characterize wide groups of grapevines used for different purposes, employing ampelographic and ISSR-PCR techniques, screen discriminative powers of ISSR primers across the genotypes investigated and compared the dendrograms constructed by two different approaches. Also technological features and ampelographic descriptions were evaluated.

Ampelography is a scientific methodology used and approved for a long time to identify grape varieties. Based on the officially defined descriptors, this method has been standardized and extended by several researchers (Galet 1985; Alleweldt & Dettweiler 1986; Santiago *et al.* 2005). Earlier works on grapevine germplasm diversty in Anatolia have involved ampelographic studies mostly done by researchers. Several studies in Turkey have also been conducted on the ampelographic identification of grapes using former definitions (Ağaoğlu *et al.* 1990; Kara, 1990). First ampelographic study was performed on grape cultivars grown in Ankara by Oraman (1937), Fidan et al. (1972) other researchers studied in the same area. Some of the studies were as follows; in Tokat (Kara, 1990), Aegean Region (Kader and Dilli, 2009) and Afyon (Akdeniz and Altındişli, 2009).

Last research about ampelography in Lakes Region was done by (Ecevit and Kelen, 1999). It was done as only a description ampelography. Different than previous research, our research was consisted of description ampelography, genetic characterization and technological features of the varieties.

Genetic characterizations of grapes have been done in Turkey. Isoenzyme studies were also used to distinguish grapevine cultivars grown in Turkey (Ağaoğlu *et al.* 1995, 1998, 1999, Söylemezoğlu *et. al,* 1998, 2001; Türkben *et. al,* 2002) with differing results in terms of the enzyme systems that help distinguishing varieties. After the development of Polymerase chain reaction (PCR), molecular markers have helped distinguishing grape cultivars and accessions on DNA level. Some moleculer identification studies on grape were done by RAPD technique by (Ergül *et. al.* 2002), AFLP technique by (Ergül *et. al.* 2004), (Aras *et. al,* 2005), (Şelli *et. al,* 2007), SSR technique by (Karataş *et. al,* 2007), (Dilli, 2008), (Sabır, 2009), (İşci *et.all.* 2009, 2010), (Hizarcı, 2010). In our study it was the first genetic identification study on local grape varieties in Lakes Region.

Technological features (yield, total soluble solids, must yield, acidity, bunch and berry specifications) were determined. In the study local grape varieties technological features, ampelographic descriptions and moleculer identification had been evaluated together for the first time in Lakes Region and the varieties with commercial importance and economical value had been evaluated with 3 different evaluation and description method.

MATERIAL AND METHOD

Eleven grapevine cultivars (Burdur Dimriti, Siyah Gemre, Akgemre, Antep Büzgülü, Şam Büzgülü, Kuş Böreği, Akdimrit, Senirkent Dimriti, Devegözü, Tilki Kuyruğu and Alyanak. Technological features (phenology stages, soluble solid (%), titratable acidity (g/l), pH, pruning weight (kg/vine), yield (kg/vine) data had been obtained in vineyard for two years. These data were analyzed to determine their ampelographic and genetic identification relationships in Lakes Region.

Lakes Region has an important vineyard areas and grape production between Middle Anatolia and Mediterranean Region. Vineyards are located in Isparta and Burdur mostly. Table grape drying grape and wine production are one together by small farmer groups (Baydar, 1998). This study was carried out in Eğirdir Horticultural Research Institute farmlands. Eğirdir is a district of Isparta. Its altitude is 920 m high and it represents passing zone climate and ecological conditions. Geographical coordinates of Eğirdir district; are 37° 50' 41", 38° 16' 55" N latitude, 30° 57' 43", 30° 44' 39" E latitude (Gargin, 2010).

Figure. 1 World Map

Figure. 2 Turkey Map

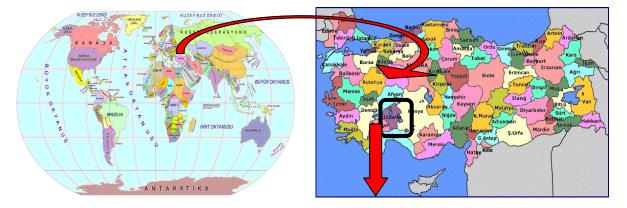


Figure. 3 Lakes Region Map

Ampelographic characterization of cultivars, the IBPGR publication Grape Descriptors (Anonymous, 1983) and the revised Descriptors for Grapevine (*Vitis* spp.), (Anonymous, 1997) were followed and used. Highly discriminating characters were selected mainly according to the recommendation of the Office International de la Vigne et du Vin (OIV). Descriptors used in this study and their OIV codes are presented in Table 1. 56 descriptors

from the list were chosen. The ampelographic observations were carried out during two consecutive vegetation periods in 2009 and 2010. The characters of represented vines were defined/measured according to OIV descriptors.

The shoot tips were investigated when they were 10 - 30 cm long; the investigations on young leaves were recorded on the first four distal leaves; the mature leaf descriptions were made between berry set and veraison (beginning of berry maturity) on leaves above the cluster within the medium third of shoot; the clusters were measured when matured; the berry characteristics were obtained at ripening ones located in the middle of the bunches and ten average canes per variety were analyzed after the fall of leaves.

 Table 1. Descriptor list investigated in the study

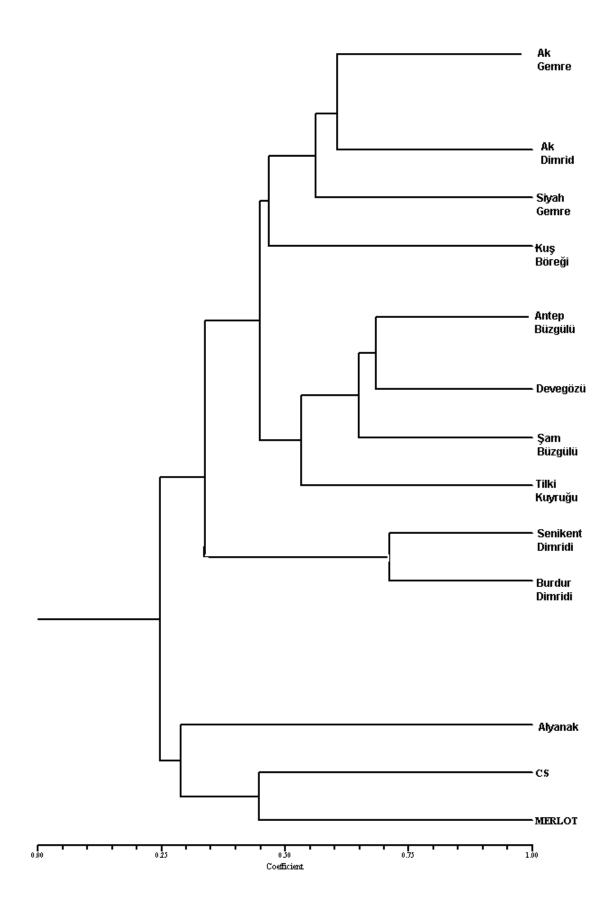
OIV code Vine part description of the character
OIV 001 young shoot form of tip
OIV 002 young shoot disruption of anthocyanin coloration of the tip
OIV 004 young shoot density of prostrate hairs on tip
OIV 005 young shoot density of erect hairs on tip
OIV 006 shoot attitude (habit)
OIV 007 shoot color dorsal side of the internodes
OIV 008 shoot color ventral side of the internodes
OIV 009 shoot color dorsal side of the nodes
OIV 010 shoot color ventral side of the nodes
OIV 015 shoot anthocyanin coloration of the bud
OIV 016 shoot number of consecutive tendrils
OIV 051 young leaf colour of upper surface
OIV 053 young leaf density of prostrate hairs between veins
OIV 054 young leaf density of erect hairs between veins
OIV 055 young leaf density of prostrate hairs on main veins
OIV 056 young leaf density of erect hairs on main veins
OIV 067 mature leaf shape of blade
OIV 068 mature leaf number of lobes
OIV 070 mature leaf anthocyanin coloration of the main veins on the upper side of the blade
OIV 074 mature leaf profile
OIV 076 mature leaf shape of teeth
OIV 077 mature leaf length of the teeth
OIV 078 mature leaf length of the teeth compared with their width at the end of the base
OIV 079 mature leaf general shape of petiole sinus
OIV 080 mature leaf shape of the petiole sinus
OIV 081 mature leaf particularities of the petiole sinus
OIV 083 mature leaf shape of base of upper sinuses
OIV 084 mature leaf density of prostrate hairs
OIV 085 mature leaf density of erect hairs between the veins
OIV 090 mature leaf density of prostrate hairs on petiole
OIV 091 mature leaf density of erect hairs on petiole
OIV 151 inflorescence sex of flower
OIV 202 bunch size
OIV 203 bunch length
OIV 204 bunch density
OIV 205 bunch number of berries
OIV 206 bunch length of peduncle
OIV 220 berry size
OIV 221 berry length
OIV 222 berry uniformity of size
OIV 223 berry shape
OIV 225 berry color of the skin
OIV 226 berry uniformity of color skin
OIV 230 berry color of flesh
OIV 236 berry particular flavor

OIV 237 berry classification of flavor
OIV 238 berry length of the pedicel
OIV 241 berry presence of seeds
OIV 242 berry length of seeds
OIV 243 berry weight of the seeds
OIV 502 bunch single bunch weight
OIV 503 berry single berry weight
OIV 504 bunch weight kg/ha
OIV 505 berry (must) sugar content
OIV 506 berry (must) total acid content

Genetic characterization was done by Inter Simple Sequence Repeat (ISSR) technique, composed of microsatellite sequence between two SSR priming sites oriented on opposite DNA strands, was approved as a simple, quick and reliable tool used in various grape materials for certain purposes (Zietkiewicz *et al.* 1994; Moreno *et al.* 1998; Dhanorkar *et al.* 2005; Sabir *et al.* 2008). Steps of ISSR metod are DNA extraction and genetic analysis.

DNA extraction: DNA was extracted using the procedure described by Lefort et al. (1998) and Ağaoğlu et al. (2001). Concentration and purity of the extracted DNA were analyzed using a NanoDrop® ND- 1000 spectrophotometer.

Genetic analysis of simple sequence repeats:


We analyzed 19 SSR markers, of which 6 belonged to the so-called "core set" (i.e., VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, and VrZAG79) of markers that are recommended for the direct comparison of results from different laboratories (This et al. 2004). PCR amplifications were performed as described by Şelli et al. (2007). PCR products were diluted in sample loading solution (SLS) and standards from the Genomelab DNA Standard Kit-400 were included. The amplified fragments were analyzed at least twice using a CEQ 8800XL capillary DNA analysis system (Beckman Coulter, Fullerton, CA) to ensure reproducibility. Allele sizes were determined for each SSR locus using the Beckman CEQ fragment analysis software. In each run, Cabernet Sauvignon and Merlot were included as reference cultivars. The number of alleles (n), allele frequency, expected (He) and observed (Ho) heterozygosity, estimated frequency of null alleles (r), probability of identity (PI), and presence of identical genotypes were determined for each locus using IDENTITY version 1.0 software (Wagner were 1000) and backet using the product of the prod

and Sefc 1999), as described by Paetkau et al. (1995). Microsat version 1.5 (Minch et al. 1995) was used to calculate the proportion of shared alleles with the ps option [i.e., option 1 (ps)] (Bowcock et al. 1994) selected to assess genetic dissimilarity. Data were then converted to a similarity matrix, and a dendogram was constructed via the unweighted pair group with arithmetic mean (UPGMA) method (Sneath and Sokal 1973), using the numerical Taxonomy and Multiware Analysis System (NTSYSpc) Software.

RESULTS AND DISCUSSION

SSR analysis: 19 SSR markers from 11 grapevine cultivars grown in Lakes Region and neighboring regions (in addition to two reference cultivars) were analyzed. Many researchers have used SSR markers to identify synonyms and homonyms of grapevine genotypes. Genetic relationship was given in figure.1 dendrogram and similarity index chart. When the genetic similarity of the genotypes was analyzed, among the grape cultivars analyzed in this study, four cases of identity were found. Ak Gemre, Kuş Böreği, Ak Dimrit, Siyah Gemre were identified in a group, Antep Büzgülü, Şam Büzgülü, Devegözü, Tilki Kuyruğu were identified in a group, Senirkent Dimridi, Burdur Dimridi were identified in a group and Alyanak, Merlot, Cabarnet Sauvignon were in other group. The lowest similarity index among varieties between was Antep Büzgülü and Alyanak while the highest were between Senirkent Dimridi, Burdur Dimridi varieties. There were no synonyms and homonyms. The dendrogram shown in figure.1 reveals that the reference cultivars used in this study are distantly related

to the Turkish cultivars studied here. The distribution of cultivars within the dendrogram appears to be independent of their ecogeographical distributions.

Figure 4 . Genetic relationships among cultivars

Characters	Ak Gemre	Kuş Böreği	Akdimrit	Siyah Gemre
Young Shoot				-
Form Of Tip	Opened	Opened	Opened	Half opened
Density Of Prostrate Hairs	Very sparse	Very sparse	Dense	Medium
Density Of Erect Hairs	Very sparse	Sparse	Very dense	Very sparse
Shoot				
Anthocyanin Col. Of The Bud	Weak	Absent	Absent	Absent
Number Of Consec. Tendrils	Discontinuous	Discontinuous	Discontinuous	Discontinuous
Mature Leaf				
Shape Of Blade	Pentagonal	Pentagonal	Pentagonal	Pentagonal
Number Of Lobes	Five	Five	Seven	Five
Shape Of Base Of Upper	V shaped	U shaped	U shaped	V shaped
Sinuses				
Inflorescence Sex Of Flower	Hermaphrodite	Hermaphrodite	Hermaphrodite	Hermaphrodite
Bunch And Berry				
Bunch size	Large	Large	Small	Medium
Bunch density	Medium	Very loose	Medium	Large
Bunch Weight Kg/Ha	Medium	Low	High	High
Berry Size	Large	Large	Medium	Medium
Berry uniformity	Not uniform	Not uniform	Uniform	Not uniform
Berry Shape	Rounddisch	Short elliptic	Rounddisch	Rounddisch
Berry Colour Of The Skin	Green-yellow	Rose-yellow	Green-yellow	Black-blue
Berry Colour Of The Flesh	Not colored	Not colored	Not colored	Colored
Presence of Seed	present	present	present	present

Table. 2 Some of the ampelographic characters determined of the varieties grown in Lakes Region

Table. 3 Some of the ampelographic characters determined of the varieties grown in Lakes Region

Characters	Şam Büzgülü	Devegözü	Tilki Kuyruğu	Antep Büzgülü
Young Shoot				
Form Of Tip	Opened	Opened	Opened	Opened
Density Of Prostrate Hairs	Very sparse	Medium	Sparse	Sparse
Density Of Erect Hairs	Medium	Medium	Strong	Medium
Shoot			•	
Anthocyanin Col. Of The Bud	Medium	Strong	Strong	Medium
Number Of Consec. Tendrils	Discontinuous	Discontinuous	Discontinuous	Discontinuous
Mature Leaf				
Shape Of Blade	Cordate	Pentagonal	Pentagonal	Pentagonal
Number Of Lobes	Seven	Seven	Seven	Five
Shape Of Base Of Upper Sinuses	U shaped	V shaped	U shaped	U shaped
Inflorescence Sex Of Flower	Hermaphrodite	Hermaphrodite	Hermaphrodite	Hermaphrodite
Bunch And Berry				
Bunch size	Medium	Large	Medium	Large
Bunch density	Medium	Loose	Large	Dense
Bunch Weight Kg/Ha	High	Low	Medium	High
Berry Size	Medium	Large	Large	Medium
Berry uniformity	Uniform	Not uniform	Not uniform	Uniform
Berry Shape	Short elliptic	Short elliptic	Long elliptic	Short elliptic
Berry Colour Of The Skin	Black-blue	Yellow-red	Yellow-green	Black-blue
Berry Colour Of The Flesh	Not colored	Not colored	Not colored	Not colored

Presence of Seed	present	present	present	present

Characters	Burdur Dimridi	Alyanak	Senirkent Dimridi
Young Shoot			
Form Of Tip	Half Opened	Opened	Opened
Density Of Prostrate Hairs	Medium	Absent	Dense
Density Of Erect Hairs	Dense	Medium	Dense
Shoot			
Anthocyanin Col. Of The Bud	Absent	Strong	Medium
Number Of Consec. Tendrils	Discontinuous	Discontinuous	Discontinuous
Mature Leaf			
Shape Of Blade	Pentagonal	Pentagonal	Pentagonal
Number Of Lobes	Five	Three	Seven
Shape Of Base Of Upper Sinuses	U shaped	U shaped	V shaped
Inflorescence Sex Of Flower	Hermaphrodite	Hermaphrodite	Hermaphrodite
Bunch And Berry			
Bunch size	Small	Large	Small
Bunch density	Dense	Medium	Medium
Bunch Weight Kg/Ha	Medium	Low	High
Berry Size	Medium	Medium	Medium
Berry uniformity	Not uniform	Not uniform	Not uniform
Berry Shape	Rounddsich	Long elliptic	Rounddisch
Berry Colour Of The Skin	Pink-red	Yellow	Pink-red
Berry Colour Of The Flesh	Colored	Not colored	Colored
Presence of Seed	present	present	present

Ampelographic characters described in 11 varieties are presented in Table 2. The forms of the tips on the young shoots were observed generally as opened. The density of prostrate and erect hairs on tip showed differences according to varieties. Dimrid varieties (Senirkent Dimridi, Burdur Dimridi and Ak Dimrid) showed dense erect and prostrate hairs on tips, Gemre varieities (Siyah Gemre, Ak Gemre) showed sparse erect and prostrate hairs on tips. Anthocyanin Col. of The Bud of varieties showed difference Devegözü and Tilki Kuyruğu had the strong coloration. Number of consecutive tendrils was discontinuous in all varieties.

Mature leaves had three, five and seven lobes and generally pentagonal shaped only Şam Büzgülü variety was in cordate form. General shape of petiole sinus was of 11 varieties were in V and U shaped. Sex of flowers in all varieties was hermaphrodite.

Bunch sizes were determined small, medium and large and bunch density varied form loose to large. Burdur Dimridi and Senirkent Dimridi had the smallest bunch density. Shape of the bunch was cylindrical and conic and winged. The size of berry was determined medium to large. Ak Gemre, Tilki Kuyruğu, Devegözü, Kuş Böreği were determined with large berry size. Shape of the berry at in all varieties was in round and short elliptic form. Berry uniformity and berry colour of the skin were generally in not uniform. Except three varieties (Burdur Dimridi, Senirkent Dimridi, Siyah Gemre) colour of the flesh juice were not colored. All varieties have present seed.

VARIETY	BUD BURST TIME	INFLORESCENCE TIME	BERRY COLOUR SET TIME	HARVEST TIME
Ak Gemre	18.04	15.06	26.08	30.09
Antep Büzgülü	22.04	14.06	06.08	26.09
Şam Büzgülü	22.04	16.06	02.08	17.09
Kuş Böreği	21.04	16.06	25.08	30.09
Ak dimrid	17.04	13.06	26.08	12.09
Senirkent Dimridi	18.04	12.06	30.07	25.08
Devegözü	24.04	15.06	19.08	02.10
Tilki kuyruğu	20.04	15.06	25.08	03.10
Burdur Dimridi	20.04	12.06	29.07	27.08
Siyah Gemre	19.04	10.06	10.08	25.09
Alyanak	21.04	14.06	20.08	26.09

Table 5. Phenologic stages of varieties in 2009

 Table 6. Phenologic stages of varieties in 2010

VARIETY	BUD BURST TIME	INFLORESCENCE TIME	BERRY COLOUR SET TIME	HARVEST TIME
Ak Gemre	14.04	13.06	12.08	16.09
Antep Büzgülü	15.04	06.06	04.08	25.09
Şam Büzgülü	12.04	13.06	02.08	29.09
Kuş Böreği	16.04	15.06	27.08	22.09
Ak dimrid	13.04	05.06	05.08	27.08
Senirkent Dimridi	12.04	05.06	05.08	27.08
Devegözü	17.04	17.06	19.08	20.09

Tilki kuyruğu	18.04	15.06	19.08	23.09
Burdur Dimridi	13.04	05.06	31.07	26.08
Siyah Gemre	18.04	13.06	08.08	16.09
Alyanak	18.04	12.06	13.08	21.09

 Table 7. Technological features of varieties in 2009

VARIETY	FRESH GRAPE YİELD (kg/vine)	AVERAGE BUNCH WEIGHT (g)	100 BERRY WEIGHT (g)	TOTAL SOLUBLE SOLIDS (%)	TITRATABLE ACIDITY (g/I)	MUST RATIO (%)
Ak Gemre	12.00	640	469	15.0	6.6	64
Antep Büzgülü	14.66	533	507	17.6	6.7	57
Şam Büzgülü	21.66	622	427	17.8	16.6	58
Kuş Böreği	16.00	600	652	16.4	4.8	62
Ak Dimrid	21.00	230	144	15.5	7.5	60
Senirkent Dimridi	17.00	322	218	15.9	7.6	57
Devegözü	7.33	368	461	15.4	6.1	52
Tilki kuyruğu	10.66	540	362	17.0	4.6	54
Burdur Dimridi	21.63	375	456	18.5	6.9	64
Siyah Gemre	24.00	383	360	172	7.3	58
Alyanak	12.00	365	347	16.8	5.8	60

Table 8. Technological features of varieties in 2010

VARIETY	FRESH GRAPE YİELD (kg/vine)	AVERAGEBU NCH WEIGHT (g)	100 BERRY WEIGHT (g)	TOTAL SOLUBL E SOLIDS (%)	TITRATABL E ACIDITY (g/I)	MUST RATIO (%)
Ak Gemre	4.7	326	570	18.8	4.8	60
Antep Büzgülü	8.6	386	511	17.9	3.8	56
Şam Büzgülü	15.3	355	482	17.9	5.1	59

Kuş Böreği	12.0	236	386	14.1	3.4	67
Ak dimrid	15.0	356	213	16.8	8.1	55
Senirkent Dimridi	17.6	228	178	16.0	5.7	57
Devegözü	13.3	266	333	14.1	4.5	50
Tilki kuyruğu	8.0	412	387	15.9	4.9	41
Burdur Dimridi	17.8	392	381	16.1	6.3	62
Siyah Gemre	5.3	244	436	17.7	5.4	52
Alyanak	7.1	373	395	16.7	6.1	59

Evaluations, findings and observations were obtained as a result of these analyses and measurements related to two varieties in 2009 and 2010 are given in tables 2,3,4,5,6,7,8. Grape varieties which were evaluated in the study, all phonological stages were determined. Buds burst time, Full blossom time, verasion period and harvest time were given in 2009 and 2010 years in table 5, 6. All varieties buds burst time was mid of the April in two years data. The earliest varieties were Senirkent Dimridi, Ak Dimrid and Şam Büzgülü were determined. Full blossom time in all varieties were second and third week of the June in two years observation. Harvest time of varieties were late August and beginning of September in 2009 and mid of the September in 2010 year. It occurred earlier in 2009 because of climate conditions but generally all varieties are harvested in September.

Among the 11 variety evaluated yield and quality properties data had been obtained in vineyard. Soluble solid (%), total titratable acidity (g/l), Pruning weight (g), pH, Average bunch weight (g), 100 berry weight, yield were determined. Two years data were given in table 4 and 5. Highest total yield were evaluated from Burdur Dimridi and Ak Gemre varieties by two years data. Highest bunch weight was evaluated from Ak Gemre and Tilki Kuyruğu varieties same with the data in ampelographic description. All varieties were good in must ratio. Generally must ratios were at % 60 or more. Kuş Böreği and Dimrit varieties (Burdur Dimridi, Senirkent Dimridi, Ak Dimrid) have high must ratios. Titratable acidity had varied 3.1-8.1 g/l in two years observations. Some varieties were evaluated for good for must ratios and yield characterics.

CONCLUSIONS

In this study genetic characterization, molecular definition, classic ampelographic definition and phenologic and technologic features of Lakes region's varieties had been researched. Only one research had been done before about these varieties in 1999 concerning classic ampelographic description. By these study varieties had been researched with three different description methods.

Genetic characterization showed that these varieties were not synonyms and homonyms. This was a good feature for breeding works. Breeding new varieties from local varieties will be possible because of wide genetic expression in varieties. Also ampelographic definitions had been done description data was updated. Phenologic stages and technological features had been evaluated some important features of varieties had been noticed. Must ratio and

yield had been significantly determined important in some varieties. Kuş Böreği and Dimrit varieties (Burdur Dimridi, Senirkent Dimridi, Ak Dimrid) have high must ratios and Burdur Dimridi variety is good for must ratio and fresh consumption. Şam Büzgülü, Antep Büzgülü, Siyah Gemre varieties were evaluated good for fresh consumption. These varieties can be advised to growers. Hopeful varieties with high must ratio and fresh consumption quality must be researched by other treatments. Cropload management and pruning studies will be done in near future. These data will be useful in the studies that will be planned for future studies about the varieties especially in breeding new varieties.

ACKNOWLEDGEMENTS

BIBLIOGRAPHY

Ağaoglu Y.S., Celik H., Gökcay E. 1990. Brief ampelographic characters of indigenous grapevine cultivars subjected to clonal selection in Turkey. 5th Int. Symp. on Grape Breeding. September 12–16, 1989, St. Martin Pfalz, Vitis Special Issue, 532–537.

Akdeniz, B., D., and Altındişli, A., 2009. Ampelography of some native grape varieties which tend to diseppear in Afyonkarahisar region. Proceedings of the 7th National Vit and technology symposium,Oct, 5-7, Manisa

Akkurt, M., 1998. Viticulture in Meram province and determination of ampelographic characters of grape varieties grown in the distirict. Proceedings of the 4th National Vit and techonology symposium,Oct, 20-23, Yalova

Alleweldt G., Dettweiler E. 1986. Ampelographic studies to characterize grapevine varieties. Vignevini, 13: 56–59.

Anonymous 1983. Grape Descriptors. InternationalBoard for Plant Genetic Resources, Rome.

Anonymous 1997. Descriptors for Grapevine (Vitis spp.). International Plant Genetic Resources Institute, Rome.

Arroyo-Garcia, R., L. Ruiz-Garcia, L. Boulling, R. Ocete, M. A. López, C. Arnold, A. Ergul, G. Söylemezoglu, H. I. Uzun, F. Cabello, J. Ibáñez, M. K. Aradhya, A. Atanassov, I. Atanassov, S. Balint, J. L. Cenis, L. Costantini, S. Gorislavets, M. S. Grando, B. Y. Klein, P. McGovern, D. Merdinoglu, I. Pejic, F. Pelsy, N. Primikirios, V. Risovannaya, K. A. Roubelakis- Angelakis, H. Snouss, P. Sotiri, S. Tamhankar, P. This, L. Troshin, J. M. Malpica, F. Lefort and J. M. Martinez- Zapater. 2006. Genetic evidence for the existence of independent domestication events in grapevine. Mol. Ecol. 15: 3707-3714.

Baydar, G. N., 1998. The Current Situation and Problems and Ecology Conditions of Isparta's Viticulture 4th National Viticulture Symposium 20 -23 October Yalova.

Bowcook, A. M., A. Ruiz- Linares, J. Tomfohrde, E. Minch, J. R. Kidd and L. L. Cavalli –Sforza. 1994. High resolution of human evolutionary trees with polymorphicmicrosatellites. Nature 368: 455-457.

Dhanorkar V.M., Tamhankar S.A., Patil S.G., Rao V.S. (2005): ISSR-PCR for assessment of genetic relationship among grape varieties cultivated in India. Vitis, 44: 127–131.

Dilli, Y., 2008. Researchs on the characterization of some important grape varieties, types and clones in Aegean region by using microsatellite (SSR) markers Ph. D. Thesis Graduate scholl of Natural and applied sciences, Ege University.

Ergül, A., K. Kazan, S. Aras, V. Çevik, H. Çelik and G. Söylemezoglu. 2006. AFLP analysis of genetic variation within the two economically important Anatolian grapevine (*Vitis vinifera* L.) varietal groups. Genome 49: 467-495. Galet P. (1985): Precis D'ampelographie Practique.5th Ed., Dehan, Montpellier.

Gargin,S., Göktas, A., Altındişli, A., 2010. Quality And Yield Performance Of Popular Turkish Wine Varities (Kalecik Karasi And Narince) In Lake Region Ecological Conditions. 33rd World Congress of Vine and Wine 21-27.06.2010,Georgia.

Hizarcı, Y., 2010. Description of ampelographic characterics and determine genetic relations by using SSR markers among grapevine cultivars grown in Yusufeli district. Ph. D. Thesis Graduate school of Natural and applied sciences, Atatürk University.

İşçi, B., A. Altındişli, G. Söylemezoğlu and C. Özer., 2010. Genome Mapping İn F1 Population of Crossbred Italia and Mercan Grape Varieties: Establishment Of AFLP and SSR Linkage Groups Towards Significant Morphological Characters and Fungal Diseases'. - African Journal of Biotechnology Vol. 9(36), PP. 5879-5886, 6.

İşçi, B., H. K., Yıldırım, A. Altındişli. 2009. A Review of the Authentication of Wine Origin by Molecular Markers.' Journal of the Institute of Brewing 115 ISSUE 3 Kara Z. (1990): Determination of the ampelographic characters of grape varieties in Tokat. [Ph.D. Thesis.] Ankara.

Karataş, H., Değirmenci, D., Velasco R., Vezzulli, S., Bodur C. and Ağaoğlu, Y.S. 2007. Microsatellite fingerprinting of homonymous varieties neihghboring regions of Southeast of Turkey, Sci. Hort., 114:164-169

Lefort, F., M. Lally, D. Thompson and G. C. Douglas. 1998. Morphological traits microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (*Q.robur* L.) at Tuallynally, Ireland. Silvae Genet. 47: 5-6.

Minch, E.; Ruiz-Iinares, A.; Goldstein, D. B.; Feldman, M.; Cavallisforza,I. L.; 1995. Microsat (version 1.4d): a computer program for calculating various statistics on microsatellite allele data. Stanford, California, Stanford University. Moreno S., Martin J.P., Ortiz J.M. (1998). Intersimple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, 101: 117–125.a.

Oraman M.N., Agaoglu Y.S. (1969). Some characteristics of Turkey's viticulture and the composition of its districts in viticulture. Ankara University Agriculture Faculty Yearbook, Ankara.

Paetkau, D., W. Calvert, I. Stirling and C. Strobeck. 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354.

Sabir A., Kafkas S., Tangolar S., Buyukalaca S. (2008). Genetic relationship of grape cultivars by ISSR (Intersimple sequence repeats) markers. European Journal of Horticultural Sciences, **73**: 84–88.

Sabır A., Kafkas S., Tangolar S., Buyukalaca S. (2009). Ampelographic and molecular diversity among grapevine cultivars. Czech. J. Genet. Plant breed, 45;160-168.

Santiago J.L., Boso S., Martınez M.C., Pinto- Carnide O., Ortiz J. M. (2005). Ampelographic comparison of grape cultivars (*Vitis vinifera* L.) grown in Northwestern Spain and Northern Portugal. American Journal of Enology and Viticulture, **56**: 287–290.

Sneath, P.H.A. and R. R. Sokal. 1973. Numerical taxanomy. San Francisco, CA: Freeman.

Selli, F., M. Bakır, G. Inan, H. Aygün, Y. Boz, A.S. Yasasın, C. Özer, B. Akman, G. Söylemezoglu, K. Kazan and A. Ergül. 2007. Simple sequence repeat-based assessment of genetic diversity in Dimrit and Gemre grapevine accessions from Turkey. Vitis 46:182-187.

This, P., A. Jung, P. Boccacci, J. Borrego, R. Botta, L. Costantini, M. Crespan, G. S. Dangl, C. Eisenheld, F. Ferreira-Monteiro, S. Grando, J. Ibanez, T. Lacombe, V. Laucou, R. Magalhaes, C. P. Meredith, N. Milani, E. Peterlunger, F. Regner, L. Zulini and E. Maul. 2004. Development of a standard set of microsatellite reference alleles for identification of grape cultivars Theor. Appl. Genet. 109: 1448-1458.

Türkben C., Söylemezoglu G., Ergül A., and Ağaoglu Y. 2002. Isoenzymatic polymorphism differentiation of Turkish grapevine cultivars by polyacrylamide gel electrophoresis. Biotechnology and Biotechnological Equipment 16: 148–151.

Zietkiewicz E., Rafalski A., Labuda D. (1994). Genome fingerprinting by simple sequence repeat (FSR)- anchored polymerase chain reaction amplification. Genomics, **20**: 176–183.

Wagner, H. W. and K. M., Sefc. 1999. Identity 1.0. Centre for Applied Genetics, University of Agricultural Science, Vienna.

Winkler, A. J., J. A. Cook, W. M. Kliewer, L. A. Lider, 1974. General Viticulture. University of California Press, Berkeley and Los Angeles. 633p.